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Abstract—The effect of the Prandt] number on laminar boundary layer flow over an arbitrarily inclined
semi-infinite flat plate, either heated or cooled, is studied. The interaction between the buoyancy forces
and the basic forced convection flow is determined. The effect of the inclination angle has already been
discussed in Part L. It turned out that investigating the horizontal and the vertical plate, respectively,
provides enough information to understand the flow at arbitrarily inclined plates. Thus in Part II the
influence of the Prandtl number will be demonstrated extensively for the horizontal and the vertical plate
only. The Prandtl number dependence of the flow and heat-transfer characteristics is first investigated by
asymptotic expansions for Pr— 0 and Pr — 0. In addition numerical solutions are given for a variety of
finite Prandt] numbers. The results are compared with those from the asymptotic theory.

1. INTRODUCTION

A DETAILED discussion of how buoyancy forces affect
the flow over inclined plates is given in Part I. This
second part focuses on the effect of the Prandt! num-
ber on this kind of mixed convection flows. Although
the asymptotic theories for small and high Prandt!
numbers are well known for pure forced convection
flows, little has been done to extend them to mixed
convection flows. Solutions have been given so far
only for asymptotically small buoyancy forces, see
for example Hieber [1] for mixed convection at the
horizontal plate. On the other hand, numerical solu-
tions with finite buoyancy parameters are given only
for the Prandtl-number range 0.1-10 (see for example
refs. {2-6]). In this paper numerical solutions will be
given for finite buoyancy parameters at infinitely small
and high Prandtl numbers at horizontal and vertical
plates, respectively. In Part I it was demonstrated how
the qualitative behaviour of mixed convection flows
over arbitrarily inclined plates can be derived from
the two extreme orientations in space (vertical and
horizontal). In addition, numerical solutions for finite
Prandtl numbers in the range 0.01-100 were cal-
culated and compared with the asymptotic solutions
for Pr— 0 and Pr— 0.

With the help of the asymptotic solutions the com-
plicated interaction between the thermal and velocity
boundary layer can be analysed quite clearly. With the
appropriate scalings of the different layers, numerical
problems are avoided for the extreme Prandtl
numbers. Finally, applying the asymptotic theory, a
solution can be given for any extreme Prandtl number
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when the basic solution has been found (often the
asymptotic solution can also be extended to moderate
values of Pr). Therefore, the asymptotic solutions are
the basis for correlations covering the whole range of
Prandt]l numbers (see Churchill and Usagi [7]). The
subsequent discussion of the Pr dependence of mixed
convection results, given in the following, is based
mainly on the asymptotic approach.

An additional benefit of the asymptotic theory was
found in the adverse buoyancy case at the horizontal
plate. Numerical problems, reported in Part 1
(detailed in ref. [8)]) for the horizontal plate, are com-
pletely eliminated in the asymptotic limit Pr — 0. The
mutual coupling between velocity and thermal bound-
ary layer is avoided in the asymptotic approach. Thus
the interaction mechanism is much simpler and the
solution in the vicinity of separation can be calculated
without any problems.

2. BASIC EQUATIONS

The problem under consideration is shown in Fig. 1.
The equations that follow are valid for any inclination
angle «, although numerical solutions will be given for
vertical and horizontal plates only (ax = 0°, 90°, 180°,
270°,...). The basic equations are (see equations (8)-
(11) in Part I)
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NOMENCLATURE
¢ friction coefficient, equation (10) B coefficient of thermal expansion
I specific heat o boundary layer thickness
e exponent of temperature distribution, see n dynamic viscosity
Part I nr scaled y-coordinate for thermal

/ scaled streamfunction, see Part [

7 scaled pressure, equation (23)

g gravitational acceleration

Gr Grashof number

Gr modified Grashof number for
¢, = const., equation (7)

L* reference length

Nusselt number, equation (11)

p pressure

Pe Peclet number, Re* Pr

Pr Prandtl number

Gu wall heat flux

Re Reynolds number

T temperature

U, free stream velocity

coordinate system

scaled coordinate system for velocity

boundary layer, see Part L.

Xes Ns

Greek symbols
o inclination angle to the horizontal

boundary layer, equation (12)

3 reduced dimensionless temperature, see
Part [
A thermal conductivity
density
Tw wall shear stress.
Subscripts
i, 0  inner, outer
s scaled for the velocity boundary layer
T scaled for the thermal boundary layer
w wall value
X local quantity
0 free stream value.
Superscripts
*

dimensional quantity
derivative with respect to
derivative with respect to 5
modified for ¢, = const.
scaled quantity.

’

Y A+APrfY —e Prf’9
,08  of |
= Prx,(3+e) [f Fl 3 :l 3)

with the associated boundary conditions

f(x,0)=0, 9(x,0)=1 T, = const.
(x,00 =0, 8(0,0)=1 B

fxoo)=1, ¥(x,0) =, 0)} 4., = const.
p(xsﬂ CX:)) = 0, S(Xs, CD) =0. (4)

For details of the nondimensionalization see Part I;
a prime denotes partial differentiation with respect to
-
The set of equations (1)-(4) can either be treated
numerically to obtain solutions for finite Prandtl num-

F1G. 1. The coordinate system for mixed convection from an
arbitrarily inclined flat plate.

bers or it can be subject to an asymptotic analysis with
respect to the Prandtl number (Pr — 0 and Pr — o0).
The length scale L*, which is purely formal, can be
eliminated. Thus the number of independent par-
ameters is reduced by one (as already demonstrated
in Part I). This leads to modified buoyancy parameters
(which are actually only used for representation of the
results)

Gr, Gr

A — i+e 3

Re? sina = x, Re? sin o &)

x
Gr, Gr

- b2

ReTECOS X=X/ re Ra%z COS & (6)
X

Now the solutions at the wall are only a function
of these two local buoyancy parameters, the Prandtl
number and the exponent of the temperature dis-
tribution.

For the constant surface heat flux case this rep-
resentation is still inadequate, since there is no well-
defined temperature difference to form a suitable
Grashof number. Thus a modified Grashof number
is introduced for the constant heat flux case

s Bratgrxripl?
Gr‘, = W (7)

The adequate buoyancy parameters for the constant
surface heat flux case are then
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Gr

G
o sin o = xJHR?’Z sina(—9(0,0) (8

T cosa(—9(0,0) (9)

r
S cos o = x, /2% Re?

Re?
(with e = 3 for ¢,, = const.).

With these definitions the buoyancy parameters in
equations (1)—(4) can be related to known quantities
for the constant heat flux case.

The numerical results in terms of dimensionless
quantities are the local skin friction coefficient c;, and
the local Nusselt number

L
Cix = W (10
_ g x*
Nux h A':;(Twoo - oo) (ll)

(¢r. has the index x to be consistent with Part I).

In cases where partial differential equations had to
be solved a Keller box scheme was employed. The
typical resolution in the y-direction was 130 grid-
points. The ordinary differential equations obtained
from the asymptotic approach were treated by a fourth-
order Runge-Kutta scheme.

3. ASYMPTOTIC THEORY FOR SMALL
PRANDTL NUMBERS

Figure 2 shows the flow field and the temperature
distribution for forced convection in a low Prandt!
number fluid. The transport mechanism for thermal
energy is much more effective than that for momen-
tum. As a consequence the thermal boundary is much
thicker than the velocity boundary layer. That is why
deviations of the velocity profile from the uniform
main stream velocity are higher order effects in an
asymptotic approach to the heat transfer problem.
This is no longer true for cases, where considerable
buoyancy forces exist. The correct asymptotic descrip-
tion then has to be derived by formal expansions and
matching between an inner and an outer layer.
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FiG. 2. Sketch of the scaling of velocity and thermal bound-
ary layer for small Prandtl numbers.
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For Pr— 0 the scaling of the velocity boundary
layer is no longer appropriate for the thermal bound-
ary layer. A new y-coordinate scaled by the Prandtl
number and a suitable scaled streamfunction must be
introduced

Ny = Pr'2y, (12)

J=Prif,

Since the thermal boundary layer is much thicker
than the velocity boundary layer, it can be regarded
as the outer layer of a matched asymptotic expansion.
The equations for the inner layer are obtained from
the original set of equations (equations (1)—(4), in the
original coordinate #,) by setting Pr to zero

(13)

x(2+ 2e)/(14+2e) _— Gr

[ =— 5 sino 9
+(3+e)x, ( +f 6f aa—){sf") (14)
=0 (15)
¥=0 (16)

(withe = Ofor T,, = const.and e = ifor ¢, = const.).
The equations for the outer layer (the thermal bound-
ary layer, in the new coordinate n) are
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—x@+2i0+20 L gn g g
e

—_
M=
Gr
1 —1/2
— N X Re? cosa Pr 3

of

+(2+e)x<0p + = f gf“) a7

. Gr
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(19

(dots denote partial differentiation with respect to 7).

The two layers are coupled by matching conditions,
which supply a suitable number of additional bound-
ary conditions to complete the closure of the problem :

inner layer

fi(x,,0) =0

Ji(x,0) =0

Ji(xs, 00) = po(x;,0)
3(x,,0) =1 (T, =const.)
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or

3(x,,0) =0 (g, = const.)

8i(x,, 00) = 3,(x;, 0) (20)
outer layer

Jolx,0) =0

Folx,00) =1

Po(X,,0) =0

9,(x,,0) =1 (T, = const.)

or

3,(0,0) =1

9,(x,,0) = 9,(0, 0)} (4 = const.)

3o (x4, 00) = 0. )

The coupling is in one direction only, since the com-
plete outer layer can be calculated without knowledge
of the inner layer, whereas the solution of the outer
layer is part of the boundary conditions for the inner
layer. This scheme fails when separation occurs in the
inner layer and a square root singularity appears.
Although the solution of the outer layer can be
extended arbitrarily beyond this point, it is invalid
since then the premises underlying the formal expan-
sion are violated. This unidirectional coupling is the
explanation for the behaviour of the heat transfer
characteristics in the vicinity of separation, which for
Pr - 0 is not affected by separation. The temperature
gradient at the wall is determined by the outer layer
without a mechanism of information transfer through
the inner part of the boundary layer.

The buoyancy force driving the flow on vertical
plates is associated with sin o and will be denoted as
‘direct free convection’. The flow mechanism for free
convection from a horizontal plate is completely
different. The flow direction is normal to the gravity
vector and fluid motion is possible only due to an
induced pressure gradient. Buoyancy is proportional
to cos o then, and the resulting flow is called ‘indirect
free convection’. For a detailed discussion of the two
kinds of buoyancy forces driving the flow on inclined
plates the reader is referred to Part I. As demonstrated
there, the flow over arbitrarily inclined plates can be
characterized by studying vertical and horizontal
plates alonc.

Results for small Prandt! numbers are shown in
Figs. 3(a)-(d) for mixed convection from a vertical
plate, and in Figs. 4(a)—(d) for mixed convection from
a horizontal plate. Generally it can be stated that, if
there is only a weak dependence on the Prandtl
number, the results are shown in terms of the original
dimensionless variables, and the influence of Pr can be
seen from the different graphs in the plots of numerical
results. If there is a strong dependence, the original
variables have to be rescaled by the Prandtl number,
and only a secondary influence of Pr can be seen in
the plots. This is the case for the Nusselt number,
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which is now given in terms of the Peclet number
(Pe = Re* Pr). The lower the Prandtl number, the
thicker the thermal boundary layer and the stronger
the buoyancy forces. Thus in the aiding case con-
vection is enhanced for low Pr and in the opposing
case flow separation is induced earlier. Due to the
fact that the mechanism of indirect free convection
is mainly dependent on the thermal boundary layer
thickness, the buoyancy forces at the horizontal plate
are much more Pr dependent than those at the vertical
plate. This has to be taken into account by introducing
new buoyancy parameters rescaled with the Prandtl
number.

Another consequence of the unidirectional coupling
is the non-existence of regular separation in the case
of vanishing Prandtl numbers. As can be seen in Fig.
5, which shows the singular lines of the complete
solution, the second quadrant is no longer fully access-
ible for Pr — 0. For Pr = O(1) regular separation can
occur there. (For details see Part 1.) Although a pres-
sure gradient normal to the wall exists in the outer
layer, the solution is not kept regular at the onset
of separation in the inner layer, due to the lack of
interactive coupling. Calculating the singular lines in
this diagram the buoyancy parameters had to be
varied independently. Thus the study was no longer
confined to vertical or horizontal plates alone.

4. ASYMPTOTIC THEORY FOR LARGE
PRANDTL NUMBERS

Similar to the case of small Prandtl numbers the
flow regime for large Prandtl numbers has to be split
into two parts, one with the scaling of the velocity
boundary layer and one with the scaling of the thermal
boundary layer. For large Prandtl numbers the trans-
port of thermal energy is much weaker than the
momentum transport. As a consequence the thermal
boundary layer is thin compared to the velocity
boundary layer. This flow situation is shown in Fig. 6.

The thermal boundary layer scaling again can be
taken from the well-known forced convection case.
The scalings of streamfunction and pressure are
different from those of the forced convection case as
a consequence of the more complex flow situation.
They are

7r = Pritn, (22)
Ff=Pridy
g=Pr'3p (23)

These transformations are valid for the inner layer.
For the outer layer, which has ambient temperature,
the basic equations are relatively unaffected. Without
buoyancy terms, they reduce to the well-known
Blasius form. As in the low Prandtl number case, the
two sets of equations (for the inner and the outer
layer) are derived from the basic equations now with
the Prandtl number going to infinity. The partial
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FiG. 5. Boundary of the region covered by boundary layer
theory results for small Prandtl numbers.

differential equations for the inner layer are

. . Gr . __ Gr
Fii= —x(2rias )_Rez s1ncx.9—-§r1sz—ReS/2
Py
xcosaPr‘2/39+(%+e)xs£ 4)
. Gr
g- =szcosaPr‘2/39 (25)

.. . . a8  of
¥ 4+if9 - =@ —— )

75— o= eon (7 2 - T} o
(with e = 0 for T,, = const. and e = } for ¢,, = const.,
dots denote partial differentiation with respect to 7r).
Those for the outer layer reduce to

Sy =0 @
=0 28)
9" =0. (29)

Again the two layers are coupled by matching con-
ditions. The boundary conditions completed by the

N B ___g_gl_ﬁa

FIG. 6. Sketch of the scaling of velocity and thermal bound-
ary layer for large Prandtl numbers.
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matching procedure are:

inner layer
Fi(x,00=0
Fix,0=0
T (5 0) = f4(x, 0)
Gi(x,, 00) =0
3i(x,,0) =1 (T, = const.)
or
3(0,0) =1
9:(x,,0) = 9;(0, 0)} (4w = const.)
9i(x,, 00) = 9,(x,,0) =0 30)
outer layer
[(x,0=0  3(x,0)=0
So(x,0) =0
folx,0) =1 po(x,,00) =0. €)))]

The energy equation in the outer layer only has the
trivial solution which thus gives a zero boundary con-
dition for the inner layer.

The outer layer always has the Blasius solution. The
only important part of the boundary layer in the case
Pr — o is the inner layer. The governing equations
of the inner layer (equations (24)—(26) and (30)) were
solved numerically applying the box method. The
results are compared with those for finite Prandtl
numbers in Figs. 7(a)—(d) (vertical plate) and in Figs.
8(a)~(d) (horizontal plate). For Pr — oo the Prandtl
number dependence of the buoyancy forces is rather
strong, since Pr directly influences the amount of
heated fluid. When all buoyancy parameters are
rescaled by Pr, only minor effects are left over in the
diagrams of Figs. 7 and 8. As in the limiting case
Pr — 0, the buoyancy forces mainly depend on the
thickness of the thermal boundary layer. The higher
the Prandtl number, the thinner the boundary layer
and the weaker the influence of the buoyancy forces
are, both in the aiding and in the opposing case.

In contrast to the low Prandt] number case, for high
Prandtl numbers there always exists regular sep-
aration for aiding indirect and opposing direct free
convection. As can be seen in Fig. 9, there is no singu-
lar line in the second quadrant. This is due to the fact,
that separation as well as the pressure gradient normal
to the wall (due to buoyancy forces) are confined to
the inner layer. By interaction between these two flow
properties, a momentum balance normal to the wall
is possible, which keeps the solution regular at the
onset of reversed flow. In the Pr — 0 case both effects
appear in different parts of the boundary layer and
no interaction is possible.

5. CONCLUSIONS

The Prandtl number dependence of mixed con-
vection flows at flat plates is investigated. Limiting
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theory results for large Prandtl numbers.

solutions for asymptotically small and high Prandtl
numbers are derived. The equations obtained are valid
for arbitrarily inclined plates, though numerical
results are given only for the two standard situations,
i.e. vertical and horizontal plate. The thermal bound-
ary layer scaling laws for limiting Prandtl numbers
were found to be identical with those for forced con-
vection. In addition, appropriate local buoyancy par-
ameters (scaled with Pr) were derived. The asymptotic
results are consistent with those obtained by the
numerical solution for extreme but finite Prandt]l num-
bers. Thus for purely accelerated flows a correlation
formula could be found covering the whole range
of Prandtl numbers and (positive) local buoyancy
parameters (see Part I).

The numerical problems with separating flow en-
countered when calculating mixed convection from
a horizontal plate with adverse buoyancy forces,
reported in refs. [6, 8], were completely eliminated in
the asymptotic approach Pr — 0. So, this asymptotical
result could be used as a reference case for modi-
fications of the numerical scheme for finite Prandtl
numbers.

On slightly inclined plates with aiding indirect free
convection and adverse direct free convection in the
limit Pr-s 0, there is a transition from regular to
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singular behaviour at separation (Fig. 35). Here
momentum balance in the y-direction is extremely
important. For Pr— 0 this balance is destroyed. A
pressure gradient normal to the wall exists in the cuter
layer only, whereas separation occurs in the inner
layer. Thus there is no interaction between boundary
layer growth and pressure gradient to keep the solu-
tion regular at separation. Due to the different struc-
ture of the flow, no such singularity is encountered in
the case Pr — oo (Fig. 9).

A comprehensive discussion of the results obtained
in the vicinity of the separation point will be given in
a subsequent paper [9].
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CONVECTION MIXTE SUR UNE PLAQUE PLANE, SEMI-INFINIE, INCLINEE—IL
INFLUENCE DU NOMBRE DE PRANDTL

Résumé—On étudie 'effet du nombre de Prandt] sur la couche limite laminaire sur une plaque plane, semi-
infinie, inclinée, chaufée ou refroidie. On détermine interaction entre les forces de flottement et celles de
P’écoulement forcée. L'effet de I'angle d’inclinaison a été discuté dans la partie I. L’¢tude des plaques
horizontale et verticale fournit une information suffisante pour comprendre I’écoulement sur une plaque
inclinée quelconque. Ici I'influence du nombre de Prandt] est montrée seulement pour les plaques horizontale
et verticale. La dépendance de 'écoulement vis-a-vis du nombre de Prandt] et celle des caractéristiques de
transfert thermique est d’abord considérée de fagon asymptotique pour Pr— 0 et Pr — co. En outre des
solutions numériques sont données pour une variété de nombres de Prandtl. Les résultats sont comparés
avec ceux de la théorie asymptotique.
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GEMISCHTE KONVEKTION AN EINER BELIEBIG GENEIGTEN
HALBUNENDLICHEN PLATTE—II. DER EINFLU3 DER PRANDTL-ZAHL

Zusammenfassung—Der EinfluBl der Prandtl-Zah! auf die laminare Grenzschichtstromung an einer beliebig
geneigten halb-unendlichen ebenen Platte, die entweder geheizt oder gekithlt ist, wird untersucht. Die
Wechselwirkung zwischen den Auftriebskriften und der urspriinglichen erzwungenen Konvektion wird
bestimmt. Der EinfluB des Anstellwinkels wurde bereits in Teil 1 dargelegt. Es zeigte sich, daBl ecine
Beschrinkung auf die horizontale und vertikale Platte hinreichende Information liefert, um die Strémung
an beliebig geneigten Platten zu verstehen. Die Wirkung der Prandtl-Zahl wird daher in diesem Teil
hauptsichlich anhand dieser beiden Sonderfille demonstriert. Die Prandtl-Zahl-Abhdngigkeit der Stré-
mungs- und Warmeiibergangsparameter wird zundchst mit Hilfe von asymptotischen Entwicklungen fiir
Pr— 0 und Pr — oo untersucht. Zusitzlich werden numerische Losungen fiir eine Anzahl von endlichen
Prandtl-Zahlen angegeben. Die Ergebnisse werden mit der asymptotischen Theorie verglichen,

CMENIAHHASI KOHBEKLIMS OT IMOJYBECKOHEYHOH IJIOCKOY NMJACTHHBI C
MMPOU3BOJIBHBIM YIJIOM HAKJIOHA—II. 3®PEKT YHUCJIA IMTPAHATIA

Amporamms—HMccmunyercs sausnue ynacna [Ipanaris Ha JaMHHApHOE TEHYCHAE B MOTPAHHYHOM Cloe
Had nonybebeckoHeuHOH 1UIOCKOR ILIaCTHHOH ¢ NPOM3BOMBLHBIM YIVIOM HAKJIOHA, KoTopas ymbo Harpe-
BaeTcs, mbo oxnaxaaeTcd. YCraHaBAUBAETCH B3AMMOIEHCTBHE MEXIY MOJbEMHBIMH CHIAMH ¥ OCHOB-
HBIM TeYeHHEM, OOYCIIOBICHHBIM BEIHYXIeHHOH KouBekimeit. DddekT yria HakloHa yxe obcyxnaaics B
I-& 4acTh craTtbd. OKa3anoch, YTO MCCIEAOBAHHE COOTBETCTBEHHO MOPH3OHTAJILHOH H BEPTHKAJIBHOM
MIACTHH obGecneiMBaeT AOCTATOYHOE KOJMHYECTBO MAHHBIX UIN IOHAMAHHA MEXaHHIMA TEYEHHA NpH
NMPOH3BONBHBIX YIJax HakioHa maactuubl. Bo 1I-& wacru craThi HA GOABUIOM KONMYECTBE NPUMEPOB
aeMoHcTpapyercs ekt yncna [Ipanarns TONbKO HNS FOPHU3OHTAILHON H BEPTHKANBHON MnacTHH.
3aBHCHMOCTEL XapaKkTePHCTHK TEYEHHS W TemnonepeHoca oT uucna IlpaHaras cHavasa Wcchedyercs
METOOM aCAMUTOTHYECKHX pasioxeHnfi npu Pr— 0 u Pr— oo, [IpHBOASTCE TaKXKE YHMC/ICHHBIC
pemicHAA I8 KoHeuHbIX wHcen Ilpanaras. Pesynprarhi NPOBEACHHOIO HCCACAOBAHHA CPABHUBAIOTCH
NOJIyMEHHBIMH Ha OCHOBE aCHMITOTHYECKOMH TeOopHu.
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