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Abstract-The effect of the Prandtl number on laminar boundary layer flow over an arbitrarily inclined 
semi-infinite flat plate, either heated or cooled, is studied. The interaction between the buoyancy forces 
and the basic forced convection flow is determined. The effect of the inclination angle has already been 
discussed in Part I. It turned out that investigating the horizontal and the vertical plate, respectively, 
provides enough information to understand the flow at arbitrarily inclined plates. Thus in Part II the 
influence of the Prandtl number will be demonstrated extensively for the horizontal and the vertical plate 
only. The Prandtl number dependence of the flow and heat-transfer characteristics is first investigated by 
asymptotic expansions for Pr -t 0 and Pr -+ co. In addition numerical solutions arc given for a variety of 

finite Prandtl numbers. The results are compared with those from the asymptotic theory. 

1. INTRODUCTION 

A DETAILED discussion of how buoyancy forces affect 
the flow over inclined plates is given in Part I. This 
second part focuses on the effect of the Prandtl num- 
ber on this kind of mixed convection flows. Although 
the asymptotic theories for small and high Prandtl 
numbers are well known for pure forced convection 
flows, little has been done to extend them to mixed 
convection flows. Solutions have been given so far 
only for asymptotically small buoyancy forces, see 
for example Hieber [l] for mixed convection at the 
horizontal plate. On the other hand, numerical solu- 
tions with finite buoyancy parameters are given only 
for the Prandtl-number range 0.1-10 (see for example 
refs. [24]). In this paper numerical solutions will be 
given for finite buoyancy parameters at infinitely small 
and high Prandtl numbers at horizontal and vertical 
plates, respectively. In Part I it was demonstrated how 
the qualitative behaviour of mixed convection flows 
over arbitrarily inclined plates can be derived from 
the two extreme orientations in space (vertical and 
horizontal). In addition, numerical solutions for finite 
Prandtl numbers in the range 0.01-100 were cal- 
culated and compared with the asymptotic solutions 
forPr-+OandPr+a. 

With the help of the asymptotic solutions the com- 
plicated interaction between the thermal and velocity 
boundary layer can be analysed quite clearly. With the 
appropriate scalings of the different layers, numerical 
problems are avoided for the extreme Prandtl 
numbers. Finally, applying the asymptotic theory, a 
solution can be given for any extreme Prandtl number 
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when the basic solution has been found (often the 
asymptotic solution can also be extended to moderate 
values of Pr). Therefore, the asymptotic solutions are 
the basis for correlations covering the whole range of 
Prandtl numbers (see Churchill and Usagi [7]). The 
subsequent discussion of the Pr dependence of mixed 
convection results, given in the following, is based 
mainly on the asymptotic approach. 

An additional benefit of the asymptotic theory was 
found in the adverse buoyancy case at the horizontal 
plate. Numerical problems, reported in Part I 
(detailed in ref. [8]) for the horizontal plate, are com- 
pletely eliminated in the asymptotic limit Pr + 0. The 
mutual coupling between velocity and thermal bound- 
ary layer is avoided in the asymptotic approach. Thus 
the interaction mechanism is much simpler and the 
solution in the vicinity of separation can be calculated 
without any problems. 

2. BASIC EQUATIONS 

The problem under consideration is shown in Fig. 1. 
The equations that follow are valid for any inclination 
angle c(, although numerical solutions will be given for 
vertical and horizontal plates only (c( = O”, 90”, 180-, 
270”, .). The basic equations are (see equations (8)- 
(1 1) in Part I) 

Gr 
-cosa9 P = 4 &p2 

1947 
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NOMENCLATURE 

Cl friction coefficient, equation (10) a coefficient of thermal expansion 
C P specific heat 6 boundary layer thickness 
e exponent of temperature distribution, see 1? dynamic viscosity 

Part I V-l scaled y-coordinate for thermal 
f scaled streamfunction, see Part I boundary layer, equation (12) 
!j scaled pressure, equation (23) 9 reduced dimensionless temperature, see 
.4* gravitational acceleration Part I 
Gr Grashof number 1. thermal conductivity 
& modified Grashof number for P density 

& = const., equation (7) L wall shear stress. 
L* reference length 
NU Nusselt number, equation (11) Subscripts 

P pressure i, 0 inner, outer 
Pe Peclet number, Re * Pr scaled for the velocity boundary layer 
Pr Prandtl number ; scaled for the thermal boundary layer 

6 wall heat flux W wall value 
Re Reynolds number x local quantity 
T temperature cc free stream value. 

I/, free stream velocity 
.X, y coordinate system Superscripts 

xs> rls scaled coordinate system for velocity * dimensional quantity 
boundary layer, see Part I. derivative with respect to 9, 

derivative with respect to qT 
Greek symbols modified for & = const. 

a inclination angle to the horizontal _ scaled quantity. 

9”+:Prf9’-e Prf’S 

=Prx,(l,+e) 
[ 

,a9 af 
f ax,-z8’ 1 (3) 

with the associated boundary conditions 

.f (x,, 0) = 0, lqx,,O) = 1 T, = const. 
jyxs, 0) = 0, 9(0,0) = 1 
,f’(x,, co) = 1, Q’(X,, 0) = Y(O,O) 1 qw = const. 
p(x,, 00) = 0, 9(x., co) = 0. (4) 

For details of the nondimensionalization see Part I ; 
a prime denotes partial differentiation with respect to 

4s. 
The set of equations (l)-(4) can either be treated 

numerically to obtain solutions for finite Prandtl num- 

I I 

9 
/ 

T,,/ 
/’ / ‘4 / / ‘1 ‘* a L 

---- - 

!I- 
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FIG. 1. The coordinate system for mixed convection from an 
arbitrarily inclined flat plate. 

bers or it can be subject to an asymptotic analysis with 
respect to the Prandtl number (Pr + 0 and Pr + co). 

The length scale L*, which is purely formal, can be 
eliminated. Thus the number of independent par- 
ameters is reduced by one (as already demonstrated 
in Part I). This leads to modified buoyancy parameters 
(which are actually only used for representation of the 
results) 

Gr, Gr 
‘--ma Rr:smci=xd+ ReZ 

Gr Gr 
2 cos c( = X,l:Z+r_ 
Re:‘* Re5/* 

cos a. (6) 

Now the solutions at the wall are only a function 
of these two local buoyancy parameters, the Prandtl 
number and the exponent of the temperature dis- 
tribution. 

For the constant surface heat flux case this rep- 
resentation is still inadequate, since there is no well- 
defined temperature difference to form a suitable 
Grashof number. Thus a modified Grashof number 
is introduced for the constant heat flux case 

The adequate buoyancy parameters for the constant 
surface heat flux case are then 
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er’sina = xl+e Gr 
Re:12 

E 9 sin a( - 9’64 0)) (8) 

& Gr 
2 (-0s a = &v2+ ~ 
Re.? Re5,2 cos a(- 9’(0, 0)) (9) 

(with e = 4 for & = const.). 
With these definitions the buoyancy parameters in 

equations (l)-(4) can be related to known quantities 
for the constant heat flux case. 

The numerical results in terms of dimensionless 
quantities are the local skin friction coefficient crX and 
the local Nusselt number 

* r, 
c -~ fr - pzu;’ (10) 

4:X* 

N", =i~(l-,,-l-,) 
(11) 

(cFx has the index x to be consistent with Part I). 
In cases where partial differential equations had to 

be solved a Keller box scheme was employed. The 
typical resolution in the y-direction was 130 grid- 
points. The ordinary differential equations obtained 
from the asymptotic approach were treated by a fourth- 
order Runge-Kutta scheme. 

3. ASYMPTOTIC THEORY FOR SMALL 

PRANDTL NUMBERS 

Figure 2 shows the flow field and the temperature 
distribution for forced convection in a low Prandtl 
number fluid. The transport mechanism for thermal 
energy is much more effective than that for momen- 
tum. As a consequence the thermal boundary is much 
thicker than the velocity boundary layer. That is why 
deviations of the velocity profile from the uniform 
main stream velocity are higher order effects in an 
asymptotic approach to the heat transfer problem. 
This is no longer true for cases, where considerable 
buoyancy forces exist. The correct asymptotic descrip- 
tion then has to be derived by formal expansions and 
matching between an inner and an outer layer. 

FIG. 2. Sketch of the scaling of velocity and thermal bound- 
ary layer for small Prandtl numbers. 

For Pr + 0 the scaling of the velocity boundary 
layer is no longer appropriate for the thermal bound- 
ary layer. A new y-coordinate scaled by the Prandtl 
number and a suitable scaled streamfunction must be 
introduced 

qT = Pr”’ % (12) 

f= Pr’12f. (13) 

Since the thermal boundary layer is much thicker 
than the velocity boundary layer, it can be regarded 
as the outer layer of a matched asymptotic expansion. 
The equations for the inner layer are obtained from 
the original set of equations (equations (l)-(4), in the 
original coordinate qS) by setting Pr to zero 

Gr f”’ + 4 fs” = _ $+ 2e)/( I + 24 _ sin c( 9 
Re2 

+(i+e)x, ( !g+fg-!Ef” 
> (14) 

s 

p’ = 0 (15) 

9’=0 (16) 

(with e = 0 for T,,, = const. and e = f for & = const.). 
The equations for the outer layer (the thermal bound- 
ary layer, in the new coordinate qT) are 

i!J’ = _xC2+ 2e)/( I + 2e) I sin a 9 
Re’ 

Gr 
-&x, Re5’2 cos a Pr- ‘I2 9 

+(++e)x, ( $+&$r- (17) 
s s > 

Gr 
~ cos u Pr-‘12 9 p = X”Re5’2 (18) 

(19) 

(dots denote partial differentiation with respect to qT). 
The two layers are coupled by matching conditions, 

which supply a suitable number of additional bound- 
ary conditions to complete the closure of the problem : 

inner layer 

f;(.LO) = 0 

fl(x,, 0) = 0 

fl(x,, a) = Po(Xw 0) 

&(x,,O) = 1 (r, = const.) 
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Or 

q(x,,o) = 0 (& = const.) 

&CXs, m) = Qo(Xs7 0) (20) 

outer layer 

Jb(x,,O) = 0 

f&L “0) = 1 

Po(x,, 03) = 0 

Qo(x,,O) = 1 (Tw = const.) 

or 

9,(0,0) = 1 

%(xs, 0) = 9,(0,0) 1 
(4,. = const.) 

Qa(X,, co) = 0. (21) 

The coupling is in one direction only, since the com- 

plete outer layer can be calculated without knowledge 
of the inner layer, whereas the solution of the outer 

layer is part of the boundary conditions for the inner 
layer. This scheme fails when separation occurs in the 
inner layer and a square root singularity appears. 

Although the solution of the outer layer can be 
extended arbitrarily beyond this point, it is invalid 
since then the premises underlying the formal expan- 

sion are violated. This unidirectional coupling is the 
explanation for the behaviour of the heat transfer 
characteristics in the vicinity of separation, which for 
Pr -+ 0 is not affected by separation. The temperature 
gradient at the wall is determined by the outer layer 
without a mechanism of information transfer through 

the inner part of the boundary layer. 
The buoyancy force driving the flow on vertical 

plates is associated with sin tl and will be denoted as 
‘direct free convection’. The flow mechanism for free 
convection from a horizontal plate is completely 

different. The flow direction is normal to the gravity 
vector and fluid motion is possible only due to an 
induced pressure gradient. Buoyancy is proportional 
to cos c( then, and the resulting flow is called ‘indirect 
free convection’. For a detailed discussion of the two 
kinds of buoyancy forces driving the flow on inclined 
plates the reader is referred to Part I. As demonstrated 
there, the flow over arbitrarily inclined plates can be 
characterized by studying vertical and horizontal 

plates alone. 
Results for small Prandtl numbers are shown in 

Figs. 3(a)-(d) for mixed convection from a vertical 
plate, and in Figs. 4(a)-(d) for mixed convection from 
a horizontal plate. Generally it can be stated that, if 
there is only a weak dependence on the Prandtl 
number, the results are shown in terms of the original 
dimensionless variables, and the influence of Pr can be 
seen from the different graphs in the plots ofnumerical 
results. If there is a strong dependence, the original 
variables have to be resealed by the Prandtl number, 
and only a secondary influence of Pr can be seen in 
the plots. This is the case for the Nusselt number, 

which is now given in terms of the Peclet number 
(Pe = Re*pr). The lower the Prandtl number, the 
thicker the thermal boundary layer and the stronger 
the buoyancy forces. Thus in the aiding case con- 
vection is enhanced for low Pr and in the opposing 
case flow separation is induced earlier. Due to the 
fact that the mechanism of indirect free convection 

is mainly dependent on the thermal boundary layer 
thickness, the buoyancy forces at the horizontal plate 
are much more Pr dependent than those at the vertical 

plate. This has to be taken into account by introducing 
new buoyancy parameters resealed with the Prandtl 
number. 

Another consequence of the unidirectional coupling 
is the non-existence of regular separation in the case 
of vanishing Prandtl numbers. As can be seen in Fig. 

5, which shows the singular lines of the complete 
solution, the second quadrant is no longer fully access- 
ible for Pr + 0. For Pr = 0( 1) regular separation can 
occur there. (For details see Part I.) Although a pres- 

sure gradient normal to the wall exists in the outer 
layer, the solution is not kept regular at the onset 

of separation in the inner layer, due to the lack of 
interactive coupling. Calculating the singular lines in 
this diagram the buoyancy parameters had to be 
varied independently. Thus the study was no longer 

confined to vertical or horizontal plates alone. 

4. ASYMPTOTIC THEORY FOR LARGE 

PRANDTL NUMBERS 

Similar to the case of small Prandtl numbers the 
flow regime for large Prandtl numbers has to be split 
into two parts, one with the scaling of the velocity 
boundary layer and one with the scaling of the thermal 
boundary layer. For large Prandtl numbers the trans- 

port of thermal energy is much weaker than the 
momentum transport. As a consequence the thermal 
boundary layer is thin compared to the velocity 
boundary layer. This flow situation is shown in Fig. 6. 

The thermal boundary layer scaling again can be 

taken from the well-known forced convection case. 
The scalings of stteamfunction and pressure are 
different from those of the forced convection case as 
a consequence of the more complex flow situation. 
They are 

(22) 

(23) 

These transformations are valid for the inner layer. 
For the outer layer, which has ambient temperature, 
the basic equations are relatively unaffected. Without 
buoyancy terms, they reduce to the well-known 
Blasius form. As in the low Prandtl number case, the 
two sets of equations (for the inner and the outer 
layer) are derived from the basic equations now with 
the Prandtl number going to infinity. The partial 
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FIG. 3. Friction coefficient and Nusselt number for mixed convection from a vertical flat plate 
for Prandtl numbers : (a), (b) constant wall temperature ; (c), (d) constant surface heat flux. small 
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FIG. 4. Friction coefficient and Nusselt number for mixed convection from a horizontal flat plate for small 
Prandtl numbers : (a), (b) constant wall temperature ; (c), (d) constant surface heat flux. 



FIG. 5. Boundary of the region covered by boundary layer 
theory results for small Prandtl numbers. 

---!k.- cosa 
Ae”’ PrV2 x 

differential equations for the inner layer are 

&(x,,O) = 1 (Tw = const.) 

or 

&(O,O) = 1 

K(x,, 0) = K(O, 0) 1 
(& = const.) 

&(X,, 00) = Q&O) = 0 (30) 

outer layer 

~(XS, 0) = 0 %(X,, 0) = 0 

“C(X,, 0) = 0 

fb(x,, co) = 1 Po(x,, a) = 0. (31) 

The energy equation in the outer layer only has the 

xcos c( Pr-2’3 S+(f+e)x 9 

trivial solution which thus gives a zero boundary con- 

3 ax, 
(24) dition for the inner layer. 

The outer layer always has the Blasius solution. The 

9’.++39’-e3’9 = (:+e)x, (26) 

_. Gr 
g =x,~cosaPr-2i39 

only important part of the boundary layer in the case 
(25) Pr -+ 00 is the inner layer. The governing equations 

of the inner layer (equations (24)-(26) and (30)) were 
solved numerically applying the box method. The 
results are compared with those for finite Prandtl 
numbers in Figs. 7(a)-(d) (vertical plate) and in Figs. 
8(a)-(d) (horizontal plate). For Pr -+ co the Prandtl 
number dependence of the buoyancy forces is rather 
strong, since Pr directly influences the amount of 

(with e = 0 for T, = const. and e = i for Qw = const., 
dots denote partial differentiation with respect to ijr). 
Those for the outer layer reduce to 

f”‘+>j=o 

p’ = 0 

9” = 0. 

(27) 
heated fluid. When all buoyancy parameters are 
resealed by Pr, only minor effects are left over in the 

(28) diagrams of Figs. 7 and 8. As in the limiting case 

(29) 
Pr + 0, the buoyancy forces mainly depend on the 
thickness of the thermal boundary layer. The higher 
the Prandtl number, the thinner the boundary layer 
and the weaker the influence of the buoyancy forces 
are, both in the aiding and in the opposing case. 

In contrast to the low Prandtl number case, for high 
Prandtl numbers there always exists regular sep- 

Again the two layers are coupled by matching con- 
ditions. The boundary conditions completed by the 

FIG. 6. Sketch of the scaling of velocity and thermal bound- 
arv laver for lame Prandtl numbers. 

The Prandtl number dependence of mixed con- 
vection flows at flat plates is investigated. Limiting 
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matching procedure are : 

inner layer 

fl(& 0) = 0 

f:‘(xs, 0) = 0 

f,’ ‘(x,, co) =f::(x,, 0) 

--f- 
65 

aration for aiding indirect and opposing direct free 
convection. As can be seen in Fig. 9, there is no singu- 
lar line in the second quadrant. This is due to the fact, 
that separation as well as the pressure gradient normal 
to the wall (due to buoyancy forces) are confined to 
the inner layer. By interaction between these two flow 
properties, a momentum balance normal to the wall 
is possible, which keeps the solution regular at the 
onset of reversed flow. In the Pr + 0 case both effects 
appear in different parts of the boundary layer and 
no interaction is possible. 

5. CONCLUSIONS 
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FOG. 7. Friction coefficient and Nusselt number for mixed convection from a vertical flat plate for large 
Prandtf numbers: (a), fb) constant wall temperature; (cf. (d) constant surface heat flux. 
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FIG. 8. Friction coefficient and Nusselt number for mixed convection from a horizontal flat plate for large 
Prandtl numbers : (a), (b) constant wall temperature; (c), (d) constant surface heat flux. 
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Gr 
x sin a 
Re2 Pr1’3 x x 
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-I 

Gr, COs a 
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FIG. 9. Boundary of the region covered by boundary layer 
theory results for large Prandtl numbers. 

solutions for asymptotically small and high Prandtl 
numbers are derived. The equations obtained are valid 
for arbitrarily inclined plates, though numerical 
results are given only for the two standard situations, 
i.e. vertical and horizontal piate. The thermal bound- 
ary layer scaling laws for limiting Prandtl numbers 
were found to be identical with those for forced con- 
vection. In addition, appropriate local buoyancy par- 
ameters (scaled with Pr) were derived. The asymptotic 
results are consistent with those obtained by the 
numerical solution for extreme but finite Prandtl num- 
bers. Thus for purely accelerated flows a correlation 
formula could be found covering the whole range 
of Prandtl numbers and (positive) local buoyancy 
parameters (see Part I). 

The numerical problems with separating flow en- 
countered when calculating mixed convection from 
a horizontal plate with adverse buoyancy forces, 
reported in refs. 16, 8], were completely eliminated in 
the asymptotic approach Pr -+ 0. So, this asymptotical 
result could be used as a reference case for modi- 
fications of the numerical scheme for finite Prandtl 
numbers. 

On slightly inclined plates with aiding indirect free 
convection and adverse direct free convection in the 
limit Pr -+ 0, there is a transition from regular to 

singular behaviour at separation (Fig. 5). Here 
momentum balance in the y-direction is extremely 
important. For Pr -+ 0 this balance is destroyed. A 
pressure gradient normal to the wall exists in the outer 
layer only, whereas separation occurs in the inner 

layer. Thus there is no interaction between boundary 
layer growth and pressure gradient to keep the solu- 

tion regular at separation. Due to the different struc- 
ture of the flow, no such singularity is encountered in 
the case Pr + co (Fig. 9). 

A comprehensive discussion of the results obtained 
in the vicinity of the separation point will be given in 
a subsequent paper [9]. 
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CONVECTION MIXTE SUR UNE PLAQUE PLANE, SEMI-INFINIE, INCLINEE-II. 
INFLUENCE DU NOMBRE DE PRANDTL 

R&u&-On Ctudie l’effet du nombre de Prandtl sur la couche limite laminaire sur une plaque plane, semi- 
infinie, in&&, chauf&e ou refroidie. On d&ermine l’interaction entre les forces de Aottement et celles de 
l’&oulement for&e. L’effet de l’angle d’inclinaison a &i discutk dam la partie I. L’ktude des plaques 
horizontale et verticale fournit une information suffisante pour comprendre l’koulement sur une plaque 
inclinte quelconque. Ici l’influence du nombre de Prandtl est montrte seulement pour les plaques horizontale 
et verticale. La dbpendance de l’&coulement vis-&vis du nombre de Prandtl et celle des caractOristiques de 
transfert thermique est d’abord considCr&e de faeon asymptotique pour Pr + 0 et Pr + m. En outre des 
solutions numkriques sont don&es pour une varittb de nombres de Prandtl. Les rksultats sont compares 

avec ceux de la thCorie asymptotique. 



Mixed convection from an arbitrarily inclined semi-infinite flat plate-11 1957 

GEMISCHTE KONVEKTION AN EINER BELIEBIG GENEIGTEN 
HALBUNENDLICHEN PLATTE-II. DER EINFLUD DER PRANDTL-ZAHL 

Zusammenfassung-Der EinfluB der Prandtl-Zahl auf die laminare Grenzschichtstriimung an einer beliebig 
geneigten halb-unendlichen ebenen Platte, die entweder geheizt oder gekiihlt ist, wird untersucht. Die 
W~h~lwirkung zwischen den Auftriebskr~ften und der urspr~nglichen erzwungenen Konvektion wird 
bestimmt. Der EinfluB des Anstellwinkels wurde bereits in- Teil‘ I dargelegt. I% zeigte sich, dal? eine 
Beschrankuna auf die horizontale und vertikale Platte hinreichende Information liefert. urn die Striimung 
an beliebig geneigten Platten zu verstehen. Die Wirkung der Prandtl-Zahl wird daher in diesem Tez 
hauptslchlich anhand dieser beiden Sonderfille demonstriert. Die Prandtl-Zahl-Abhlngigkeit der Strii- 
mungs- und Wgrmeiibergangsparameter wird zuntichst mit Hilfe von asymptotischen Entwicklungen fiir 
Pr - 0 und Pr + co untersucht. Zusitzlich werden numerische Liisungen fiir eine Anzahl von endlichen 

Prandtl-Zahlen angegeben. Die Ergebnisse werden mit der asymptotischen Theorie verglichen. 

CMEIIIAHHAII KOHBEK~HX OT I’IOJIYEECKOHEgHOfi IIJIOCKOti l-IJIACTMHbI C 
IIPOM3BOJIbHbIM YrJIOM HAKJIOHA-II. 3cgQEKT qMCJIA I-IPAHATJIR 

~~~~n~yeTc~ 6nHiimie qucna IIpaHnTnn Ha naMnwapHoe Teremre a norpamisHoki cnoe 
Ha22 nOAy~~KOHeqH0~ IlJloCKOii IIJIaCTHHOiiC NpOH3BOAbH~M yrnOM HaKJIoifa, KOTOpZW nii60 Hafpe- 
aaen‘n, nn60 0xnaxcAaeTcK. YcraHamifsaercR ssamfo~eficmufe MeXIfy no~~hfribmni cmabm H OCHOB- 

nbmf TeueH~eM,o6ycnonnewmm ebniymenHok KoweKuneiL3$@e~~ yrna HafinoHa yrte 06cy~a~1cn B 

I-ii YamH CTaTbH. OKa3aJIOCb, 'iTO HCCAeAOBaHHe COOTBCTCTBeWWO TOpH30HTaJlbHOSi II BepTHKaJlbHOi! 

nnacrmf 06ecnermaeT AocTaToqHoe KO~~~TBO Aannbtx ~.nn nowiMaHHK Mexamwa TeqeHHn np~ 

npOH3BOJIbHbIX yrnax HaKJIOna nnacmear. Bo II-@ vacTH CTaTbH Ha 6onbuIoM KOnmecTBe npmepos 
ACMOHCrpUpyeTCK Z+&KT SHC,U3 &,ZtEIATRK TOnbKO QnK TOPH30HTaJIbHOji K BepTHKEUlbHO& "JIaCTHH. 

3amcHMocTb xapaprepmmm Teqemis H Ten~o~e~H~ 0~ mcna TIpaimTnn cxiawxa mcneAyercK 

MeTOAOM acmfnToTwecKsix pa3no;KeHHii nplvl Pr+0 w Pr-+m. II~HBOAKTCR TaKwce rmneiixibre 
pCXneHEl QnX KOHeWiMX YHWA &,aHATAK.Pe3yJIbTaTb‘ ITpOBeAeHHOrO HCCJIeAOBaHHR CpaBHHBaloTCSi C 


